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Abstract: In recent years, the growing awareness of health-conscious eating habits and 
the rising prevalence of lifestyle diseases, such as obesity and diabetes, have underscored 
the importance of personalized nutrition. As individuals face increasingly complex 
dietary choices, the need for systems that can recommend food based on specific 
nutritional requirements has become crucial. Traditional food recommendation methods 
are often limited by their inability to account for individual health needs and preferences. 
This study proposes a novel personalized diet recommendation model that combines 
neural networks and K-Means clustering. K-Means is used to cluster food items based 
on their nutritional content, while a neural network predicts the most appropriate cluster 
for an individual based on their input nutritional preferences. Given a specific set of 
nutritional requirements, the system can return a list of foods that meet these criteria, 
enhancing its practical application for personalized diet planning. The model 
incorporates data preprocessing techniques such as handling missing values, 
standardizing nutritional features, and selecting relevant features to improve efficiency 
and accuracy. The results show that the model is effective in recommending foods that 
align closely with the user's dietary goals, with performance evaluated through multiple 
machine learning metrics. This hybrid model significantly enhances the accuracy and 
relevance of food recommendations compared to traditional methods, offering a 
promising solution for personalized diet planning. Future improvements could focus on 
integrating dynamic user profiles and incorporating additional health factors, such as 
micronutrients and individual health conditions, to provide even more personalized 
recommendations. 
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1. Introduction 

In recent years, the world has seen significant advancements in the understanding and optimization 

of human nutrition [1][2]. The growing awareness of health-conscious eating habits and the 

increasing prevalence of lifestyle diseases, such as obesity and diabetes, have placed a strong 

emphasis on proper nutrition. Food is not only a basic human need but also a critical factor in 
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maintaining good health and well-being [3][4]. The consumption of food involves the intake of 

various nutrients such as carbohydrates, proteins, fats, vitamins, and minerals, each playing a 

pivotal role in ensuring the proper functioning of the body. The challenge, however, lies in 

identifying the right food for an individual's specific health and nutritional requirements. 

Food, by definition, is any substance that provides essential nutrients for the body. It is 

typically composed of macronutrients (proteins, carbohydrates, and fats) and micronutrients 

(vitamins and minerals) that are necessary for the body's growth, maintenance, and repair. Proper 

food choices support energy production, help prevent chronic diseases, and ensure optimal bodily 

functions. However, the complex interactions between different food types and their impact on 

individual health make food selection a nuanced and personalized task. With an increasing number 

of options available to consumers and the complexity of food's nutritional values, selecting the 

right food that aligns with a person's health goals has become a challenge. This challenge is 

compounded by the individual variability in nutritional requirements, such as differing needs based 

on age, gender, physical activity levels, medical conditions, and personal goals such as weight 

management or muscle building. This has led to a growing interest in personalized diet 

recommendations, which aim to suggest specific food choices based on an individual's needs and 

preferences. 

Traditional food recommendation methods often rely on simple algorithms [5][6][7] that 

suggest foods based on basic preferences or food categories. Early approaches used collaborative 

filtering, where recommendations were made based on user similarities or food similarities 

[8][9][10]. For example, if two users had similar dietary preferences, the system would recommend 

foods that one had rated highly to the other. However, these methods face several challenges, such 

as limited data and the inability to handle complex relationships between food attributes and 

individual health needs. Another traditional method for food recommendations relies on expert 

systems, which use predefined rules to match users with foods that align with certain nutritional 

guidelines. These rules are based on dietary guidelines established by health organizations or 

personalized through nutritionists. While these approaches can provide generic recommendations, 

they do not always account for personal preferences, food availability, or the subtle nuances of an 

individual's health condition. Furthermore, these systems tend to be static and inflexible, making 

it difficult to adapt to evolving nutritional science or changing user needs [11][12][13]. 

Additionally, most traditional recommendation systems do not effectively incorporate the wealth 

of data available on various food items and their nutritional content. This results in limited 

suggestions that might overlook newer, more appropriate, or less obvious food choices. 

With the advancement of Artificial Intelligence (AI) [14][15][16][17], new opportunities have 

emerged for improving food recommendation systems. AI techniques, particularly machine 

learning, allow for the modeling of complex relationships within data and can enable systems to 

learn from vast amounts of food-related information. Unlike traditional approaches, AI-driven 

recommendation systems can account for intricate variables such as food preferences, nutritional 

content, and personal health conditions, providing more accurate and personalized suggestions. 

Machine learning models, such as deep learning and clustering algorithms [18][19][20], have been 

utilized in recent years to improve food recommendations. For example, deep learning models 

such as neural networks [21][22] can learn complex patterns in food preference and dietary needs, 

while clustering algorithms like K-Means can group food items into clusters based on shared 

features, making it easier to recommend items within those groups. These advancements have 

made it possible to tailor food suggestions to individual needs in a way that traditional methods 

cannot. 

A number of studies have attempted to integrate machine learning algorithms into food 

recommendation systems [23][24][25]. For instance, some research focuses on utilizing neural 

networks [26][27][28] to predict a user's food preferences based on previous consumption patterns, 
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while others apply clustering techniques [29][30][31] to categorize foods based on their nutritional 

content and suggest food options accordingly. In one study, a collaborative filtering-based 

recommendation system was enhanced using machine learning algorithms to predict user 

preferences more effectively [32]. Other approaches have employed K-Means clustering to group 

foods with similar nutritional content and then used these groupings to suggest the most 

appropriate foods for a user based on their dietary requirements [33][34]. 

However, while these methods represent an improvement over traditional approaches, they 

still often suffer from certain limitations [35][36][37]. For instance, many models fail to account 

for the dynamic nature of nutrition needs, such as changes in an individual's health status over time. 

Additionally, many systems are unable to handle the complexity of food composition and do not 

offer users enough control over customization. The integration of multiple AI techniques, such as 

combining K-Means clustering and neural networks, offers a more promising approach to 

overcome these issues and provide a more comprehensive and accurate recommendation system. 

This study proposes a model for personalized food recommendations shown in Figure 1, 

combining neural networks and K-Means clustering. By using K-Means to group food items based 

on nutritional content and neural networks to predict the best cluster, the model offers more 

accurate and relevant recommendations tailored to individual nutritional needs. The 

implementation begins with data preprocessing, where missing values are handled, and the 

nutritional data is standardized. Next, K-Means clustering is applied to group food items based on 

their nutritional features. Once the food items are clustered, a neural network with the best 

performance comparted to other machine learning models is trained to predict the appropriate 

cluster based on the user’s input. To refine the recommendation, the system calculates the 

Euclidean distance between the user’s nutritional requirements and each food item in the predicted 

cluster. The food items with the small distance are selected as the best matches. 

 

Figure 1. The process of the proposed personalized diet recommendation framework. 

2. Literature Review 

A. Personalized diet recommendation 

Personalized diet recommendation systems aim to tailor dietary advice to individual needs, 

enhancing health outcomes and user satisfaction. Recent studies have explored various 

methodologies to achieve this personalization. Seneviratne et al. developed a Personal Health 

Ontology to capture dietary preferences and personal contexts, facilitating personalized dietary 

recommendations. This knowledge model integrates semantic technologies to represent a patient's 
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medical information, social determinants of health, and daily living observations, enabling the 

generation of personalized diet plans [38]. Ahmadi et al. introduced a preference-aware inverse 

optimization approach to diet recommendations. By combining clustering models with inverse 

optimization techniques, they developed a method that recovers utility functions across clusters, 

providing optimal diet recommendations that reflect both patient preferences and expert dietary 

guidelines [39]. Islam et al. proposed a human behavior-based personalized meal recommendation 

and menu planning system. Utilizing electroencephalography signals to detect individuals' 

affective responses to different foods, their system integrates this data with nutritional 

requirements to generate personalized meal plans, addressing both emotional and health aspects of 

dietary choices [40]. Khan et al. explored ensemble topic modeling for personalized, health-aware 

recipe recommendations. Their approach considers various factors, including taste preferences, 

demographics, and nutritional needs, to assist users in finding recipes that align with their health 

goals and personal tastes [41]. 

3. Method 

A. Dataset descrption and preprocessing 

The dataset used in this study is sourced from Kaggle, containing food items along with their 

nutritional information. It includes various food features and provides a comprehensive dataset for 

food recommendation tasks. The dataset consists of 8,790 entries and 54 features, which describe 

different nutritional aspects of food. These features include food name descriptions, water content, 

energy in kilocalories, protein, lipid content, ash, carbohydrates, fiber, sugar, and more. In this 

study, we focus on a subset of these features to streamline the analysis and reduce the 

computational complexity. The distributions of these features can be found in Figure 2. 

Several preprocessing techniques were applied to the dataset to ensure its quality and usability 

for the model: 1) Handling Missing Values: Some of the features in the dataset, such as Ash_(g), 

Fiber_TD_(g), and Sugar_Tot_(g), contained missing values shown in Figure 3. These missing 

values were handled by filling them with the mean of the respective column. This approach is 

beneficial as it prevents the loss of valuable information and maintains consistency in the data 

without introducing bias. 2) Standardization: The nutritional features were standardized using 

StandardScaler from scikit-learn. Standardization scales the data so that it has a mean of 0 and a 

standard deviation of 1. This is particularly useful when working with machine learning algorithms, 

as it ensures that all features contribute equally to the model and prevents features with larger 

ranges from dominating the analysis. 3) Feature Selection: To further optimize the model and 

reduce computational complexity, we selected a subset of relevant features for analysis. The 

features chosen were: Shrt_Desc, Water_(g), Energ_Kcal, Protein_(g), Lipid_Tot_(g), Ash_(g), 

Carbohydrt_(g), Fiber_TD_(g), and Sugar_Tot_(g). By selecting only these features, we removed 

redundant or less useful data, allowing for more efficient computation and improving the model's 

ability to focus on the most important factors influencing food recommendations. By applying 

these preprocessing techniques, we ensured that the data is clean, standardized, and optimized for 

use in the model, which aids in improving the accuracy of predictions and the overall performance 

of the system. 
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Figure 2. The distribution of some numerical features. 
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Figure 3. The percentage of missing values of feature in the collected dataset. 

B. K-means algorithm for clustering different food items 

The K-Means algorithm [42][43] is an unsupervised machine learning method commonly used for 

clustering data into groups or clusters based on their similarity. It operates by dividing data into a 

specified number of clusters, k, where each cluster is represented by its centroid — the mean of all 

points in that cluster. The algorithm iterates by assigning each data point to the nearest centroid, 

recalculating the centroids, and repeating the process until convergence, which occurs when the 

cluster assignments no longer change. In our case, we applied the K-Means algorithm to cluster 

food items based on nutritional features, such as calories, protein, fat, carbohydrates, and fiber 

content. This method helps group foods with similar nutritional profiles, facilitating more targeted 

and personalized food recommendations. 

To determine the optimal number of clusters, k, we used the elbow method. This technique 

involves calculating the within-cluster sum of squares (inertia) for a range of k values. As the 

number of clusters increases, the inertia decreases, but at a certain point, the rate of decrease slows 

down. The "elbow" point, where this deceleration becomes more pronounced, indicates the most 

appropriate k. 

For our dataset, we chose the optimal number of clusters based on this method, ensuring that 

the model effectively captures the underlying structure in the data. After determining k, we applied 

K-Means to the preprocessed data, which included standardizing nutritional features. The 

algorithm then grouped the food items into clusters with similar nutritional characteristics, which 

form the basis for personalized diet recommendations. 

C. Machine learning models 

While K-Means is a powerful tool for clustering, it has limitations when it comes to predicting the 

appropriate food cluster for a given user based on their nutritional preferences. K-Means groups 
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food items based on their similarity in nutritional content and assigns each item to the nearest 

centroid of a cluster. However, directly relying on the cluster centroids to make predictions can be 

limiting, as it does not account for the nuanced preferences or specific dietary needs of individual 

users. Additionally, once the clusters are formed, K-Means does not offer a dynamic mechanism 

to predict which cluster a new food item or a user’s input should belong to, making the system less 

adaptable. Therefore, to overcome these limitations, this study extends the use of K-Means 

clustering by incorporating machine learning models to predict the most appropriate cluster based 

on individual user input. This additional layer of machine learning allows the model to consider 

complex relationships between the user’s nutritional preferences and the food items in each cluster. 

By training machine learning models, we enhance the flexibility and accuracy of the 

recommendation system. The machine learning models employed in this study include Decision 

Trees (DT), Gradient Boosting Decision Trees (GBDT), Artificial Neural Networks (ANN), and 

K-Nearest Neighbors (KNN). 

Decision Tree 

The decision tree algorithm [44] is a supervised learning model that splits data into branches based 

on feature values to make predictions. It is particularly effective when the data is non-linear, as it 

can handle complex decision boundaries by recursively partitioning the input space. A decision 

tree is easy to interpret and visualize, which makes it a great tool for understanding how different 

food features influence the cluster prediction. However, decision trees can easily overfit the data, 

especially when the tree is allowed to grow deep. To mitigate this, techniques like pruning and 

max depth constraints can be used to limit the complexity of the tree. 

Gradient Boosting Decision Tree 

The gradient boosting decision tree [45] is an ensemble learning technique that builds a series of 

decision trees sequentially. Each tree tries to correct the errors made by the previous one by 

focusing on the residual errors. This iterative process leads to a robust model that can improve 

prediction accuracy over time. GBDT is particularly useful for handling high-dimensional data and 

complex relationships. By combining the results of multiple decision trees, GBDT reduces the risk 

of overfitting and improves the generalization power of the model. One popular implementation 

of GBDT is XGBoost, which optimizes the speed and performance of the algorithm, making it 

suitable for large-scale datasets. 

Artificial Neural Networks 

Artificial neural networks (ANN) [46] are computational models inspired by the structure and 

functioning of the human brain. They consist of layers of interconnected nodes (neurons) that 

process input data and propagate it through hidden layers before outputting the final prediction. 

ANNs are capable of modeling highly complex relationships between inputs and outputs, making 

them particularly suitable for tasks where linear models may fall short. In this study, we used ANN 

to predict the most appropriate cluster for a given user’s dietary input. The architecture of the neural 

network consisted of three layers: an input layer, two hidden layers, and an output layer. The input 

layer receives the nutritional features of the food (e.g., energy and protein). The hidden layers 

perform transformations to capture complex patterns in the data, while the output layer predicts 

the cluster assignment. Each hidden layer consisted of 64 neurons in the first layer and 32 neurons 

in the second layer, activated by the Rectified Linear Unit (ReLU) function. ReLU is widely used 

in deep learning for its ability to introduce non-linearity without saturating at large positive values. 

The output layer used softmax activation, as it was a classification problem where the task was to 

predict one of several clusters. Softmax allows the network to output probabilities for each class, 

which can then be interpreted as the most probable cluster. 



 

8 

 

The network was trained using the Adam optimizer, a popular optimization algorithm that 

adapts the learning rate based on the data and minimizes the loss function effectively. The sparse 

categorical cross-entropy loss function was used because we are working with multiple classes 

(clusters) and our target labels are integers rather than one-hot encoded vectors. 

K-nearest Neighbors 

The K-Nearest Neighbors algorithm [47] is another supervised learning model used for 

classification tasks. It works by comparing a new data point to the k-nearest points in the training 

data and assigns the class (cluster) based on the majority vote of the neighbors. KNN is particularly 

simple and effective when the data has clear, well-separated clusters. KNN has the advantage of 

being simple to implement and interpret, but it can be computationally expensive for large datasets, 

as it requires calculating distances to all training points during prediction. 

4. Results and Discussion 

A. The statistical analysis of the features 

The Pearson correlation matrix [48][49] shown in Figure 4 provides valuable insights into the 

relationships between various nutritional features in the dataset, revealing both strong and weak 

correlations among the food components. One of the most striking findings is the strong negative 

correlation between Water_(g) and Energ_Kcal (-0.90). This suggests that foods with higher water 

content, such as fruits and vegetables, tend to have lower calorie values. This observation aligns 

with the general understanding that foods high in water are usually lower in energy density. 

Additionally, Water_(g) shows a negative correlation with Carbohydrt_(g) (-0.77), which indicates 

that foods with more water content tend to be lower in carbohydrates. On the other hand, several 

strong positive correlations are evident. For example, Energ_Kcal and Lipid_Tot_(g) exhibit a 

high correlation of 0.81, indicating that calorie-dense foods typically contain higher levels of fat, 

which is consistent with the fact that fats are a concentrated source of energy. Similarly, 

Carbohydrt_(g) and Sugar_Tot_(g) have a moderate positive correlation of 0.68, suggesting that 

carbohydrate-rich foods often contain significant amounts of sugar, particularly in the case of 

simple carbohydrates. In contrast, Protein_(g) demonstrates weaker correlations with other 

nutritional features. For instance, its correlation with Energ_Kcal is only 0.11, indicating that 

protein content does not strongly influence the calorie value of foods. Similarly, the correlation 

between Protein_(g) and Carbohydrt_(g) is -0.30, further highlighting that protein-rich foods do 

not necessarily correlate with higher carbohydrate content. These findings are valuable in 

understanding the underlying patterns in the nutritional composition of food. The strong positive 

correlations between calories and fat, as well as between carbohydrates and sugar, reflect the 

natural composition of many food items. The negative correlations between water content and 

other nutritional features suggest that low-calorie, high-water foods are often different from high-

calorie, low-water foods. 
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Figure 4. The correlation coefficients among features in the collected dataset. 

B. The performance of K-means clustering result 

The clustering results are based on the application of the K-Means algorithm, with the 

determination of the optimal number of clusters guided by the elbow method and silhouette score 

shown in Figure 5. The elbow method plot (on the left) illustrates a sharp decrease in inertia as the 

number of clusters increases, followed by a noticeable flattening of the curve. This indicates that 

the most appropriate number of clusters is likely 3, where the drop in inertia becomes less 

significant, suggesting that adding more clusters would not substantially improve the model's 

performance. The silhouette score plot (on the right) further supports this conclusion, as it shows 

the highest silhouette score around 3 clusters, implying that the clusters are well-separated and 

cohesive at this value of k. 
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Figure 5. The optimal k value determined by Elbow and Silhouette score. 

The PCA visualization of the clusters (on the right) shown in Figure 6 provides an intuitive 

representation of the clustering results. The plot clearly shows three distinct clusters, represented 

by different colors: green, orange, and blue. Each point on the plot represents a food item, with the 

x and y axes corresponding to the first and second principal components derived from the original 

features. This dimensionality reduction allows for an easy visual inspection of how well the K-

Means algorithm separated the data into groups. The separation between clusters is evident, with 

minimal overlap, confirming that the chosen number of clusters effectively captured the underlying 

structure in the data. 

 

Figure 6. The PCA visualization of clusters. 
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C. The performance of multiple machine learning models 

The model evaluation results reveal the impressive performance of different machine learning 

algorithms in predicting food clusters based on their nutritional content. From the accuracy and 

loss curves shown in Figure 7, we observe that the ANN model exhibits strong performance, with 

a rapid increase in accuracy and a decrease in loss during the early epochs of training. The train 

accuracy continues to increase, while the test accuracy also stabilizes at a high value around 0.9983. 

The loss curve shows a significant drop, indicating that the model converges quickly to a solution. 

This suggests that the ANN model is well-trained and generalized, making it a reliable predictor 

for food clustering tasks. Figure 8 and Table 1 provide a clear comparison of the performance of 

different models across multiple metrics, including accuracy, F1-score, recall, and precision. The 

ANN model outperforms all other models, with the highest accuracy of 0.9983, F1-score of 0.9983, 

and recall of 0.9983. This is followed by GBDT and KNN, which also achieve strong performance, 

but slightly lower than ANN. The DT performs the weakest among these models, though it still 

achieves a high accuracy of 0.9932. Finally, the confusion matrices in Figure 9 reveal the precision 

of each model in predicting the correct clusters. The ANN, GBDT, and KNN models show a very 

low number of misclassifications, with the majority of predicted labels corresponding accurately 

to the true labels. The decision tree, although it performs well, has a slightly higher number of 

misclassifications, especially in the classification of class 2. 

 

Figure 7. The accuracy and loss curve of the ANN model. 

 

Table 1. The performance of models evaluated by different metrics. 

Metrics Accuracy 
F1-score 

(weighted) 
Recall (weighted) 

Preicision 
(weighted) 

Decision tree 0.9932 0.9932 0.9932 0.9932 

K-Nearest 

neighbors 
0.9943 0.9943 0.9943 0.9943 

Gradient-boosted 

decision tree 
0.9949 0.9949 0.9949 0.9948 

Artificial neural 

network 
0.9983 0.9983 0.9983 0.9983 
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Figure 8. The visualization of performance comparison based on various models. 

 

Figure 9. Confusion matrices of different models. 



 

13 

 

D. Personalized diet recommendation results visualization based on input sample testing 

The personalized diet recommendation results based on the sample input nutritional requirements 

such as [15, 700, 6, 35, 1, 40, 1.0, 0.72] (corresponding to 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 

'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)') are provided. Shown 

in Table 2, it demonstrated the system's excellent accuracy in matching foods to the user's 

nutritional needs. The recommended food list includes two variants of Puff Pastry, both closely 

aligning with the input preferences. The first option provides 8.50g of water, 551 kcal, 7.30g of 

protein, and 45.10g of carbohydrates, while the second is very similar, with slightly higher 

nutritional values. Additionally, KFC Fried Chicken was recommended, with 26.98g of water, 464 

kcal, 10.96g of protein, and 36.61g of fat. Although it has lower carbohydrate content (22.54g), it 

still fulfills the higher caloric and protein needs specified in the input. These results showcase the 

system's effectiveness in tailoring recommendations to specific nutritional requirements. The 

accuracy of the food suggestions highlights the model's ability to adapt to various preferences, 

such as the need for moderate fat and calorie intake while maintaining low sugar and fiber. 

Table 2. The personalized diet recommendation results based on one input nutritional requirement. 

Food list 
Water_(

g) 

Energ_Kc

al 

Protein_(

g) 

Lipid_Tot_

(g) 

Ash_(

g) 

Carbohydrt_

(g) 

Fiber_TD_

(g) 

Sugar_Tot_

(g) 

PUFF 

PASTRY,FRZ,RTB 
8.50 551 7.30 38.10 1.00 45.10 1.5 0.74 

PUFF 

PASTRY,FRZ,RTB,

BKD 

7.40 558 7.40 38.50 1.00 45.70 1.5 0.75 

KFC,FRIED 

CHICK,EX 

CRISPY,SKN & 

BREADING 

26.98 464 10.96 36.61 2.92 22.54 1.5 0.00 

 

5. Discussion 

While the personalized diet recommendation system demonstrated strong performance in matching 

food items to user-defined nutritional needs, there are several limitations that need to be addressed 

to enhance the model's effectiveness in real-world applications. One of the main shortcomings of 

the current approach is its reliance on a limited number of nutritional features. Although the system 

performs well with the features used in this study, it does not take into account other important 

factors such as micronutrients (vitamins, minerals), food preferences (e.g., vegetarian or vegan 

diets), and individual health conditions (e.g., diabetes or hypertension). Incorporating a broader 

range of dietary requirements and preferences would make the recommendations more 

comprehensive and personalized. Another limitation is the static nature of the model. It currently 

provides food recommendations based on a single set of input nutritional values, without 

accounting for changes in a user’s dietary needs over time. For example, a person’s nutritional 

requirements may change due to weight loss, muscle gain, or health issues. Future versions of the 

system should integrate dynamic user profiles that adapt to evolving health goals, activity levels, 

or medical advice. Furthermore, the current recommendation system lacks the ability to consider 

factors such as food availability, cost, or regional dietary preferences. These practical aspects could 

significantly impact on the feasibility and acceptance of the recommendations in real-life scenarios. 
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6. Conclusion 

The proposed personalized diet recommendation system, combining K-Means clustering with 

neural networks, offers a promising approach for delivering tailored dietary advice. Given a 

specific set of nutritional requirements, the system can return a list of foods that meet these criteria, 

enhancing its practical application for personalized diet planning. The system effectively identifies 

food clusters based on nutritional content and predicts the most appropriate cluster for users' 

specific needs. Results from the evaluation show that the model outperforms traditional 

recommendation systems, providing more accurate and relevant food suggestions. Despite its 

strong performance, the model still faces limitations, such as its reliance on a limited set of 

nutritional features and its inability to adapt dynamically to users’ changing health conditions. In 

the future, integrating additional dietary preferences, health data, and regional food availability 

could further enhance the system’s applicability and accuracy. The incorporation of evolving user 

profiles that adapt to changes in health goals or conditions would increase the system’s flexibility 

and improve its long-term usefulness. Overall, this approach has the potential to revolutionize 

personalized nutrition by offering more dynamic, data-driven, and comprehensive dietary 

recommendations. 
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