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Abstract: Capillary transport is a critical process in various scientific and engineering 
applications, such as microfluidics and porous materials characterization. Understanding 
and accurately modeling capillary transport phenomena are essential for optimizing these 
applications. However, the current state of research in this field faces challenges due to 
the complex and dynamic nature of capillary flow behavior. This paper addresses these 
challenges by proposing a novel approach based on Dynamic Bayesian Networks (DBNs) 
to model capillary transport. The innovative aspect of this work lies in the integration of 
DBNs with capillary flow mechanisms, providing a more comprehensive and accurate 
representation of the transport process. The study presents a detailed analysis of the 
methodology and its application in predicting capillary flow behavior. Overall, this 
research contributes to advancing the understanding and modeling of capillary transport 
processes, offering valuable insights for future studies in this area.	
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1. Introduction 

Capillary transport modelling is a research field that focuses on studying and predicting the 
movement of fluids within small spaces, such as capillaries. Currently, some of the main challenges 
and bottlenecks in this field include accurately capturing the complex interactions between different 
phases of fluids, understanding the influence of surface properties on fluid flow, and developing 
robust numerical methods for simulating capillary transport phenomena. Additionally, integrating 
experimental data with theoretical models remains a key hurdle in validating and improving the 



 
	
	

accuracy of these models. Overall, advancements in capillary transport modelling require 
interdisciplinary collaboration, innovative experimental techniques, and advanced computational 
algorithms to address these challenges and further our understanding of fluid behavior in small-
scale systems. 

To this end, research on Capillary transport modelling has advanced significantly, with current 
studies delving into complex fluid dynamics, multiscale modeling, and advanced numerical 
simulations. The field has witnessed substantial growth in understanding capillary phenomena, 
paving the way for practical applications in various scientific and engineering disciplines. Recent 
studies have focused on the pore network modelling of capillary transport and relative diffusivity 
in gas diffusion layers with patterned wettability[1]. The research aims to optimize water 
management in polymer electrolyte fuel cells by synthesizing GDLs with patterned wettability 
using radiation grafting techniques[1]. By employing physically representative models based on 
high-resolution tomographic images, the influence of substrate microstructure, hydrophobic 
coating load, and hydrophilic pattern width on transport characteristics was investigated, showing 
enhanced phase separation and diffusive transport with tuned wettability[1]. In contrast, another 
study delved into modelling capillary effects on the reactive transport of chloride ions in 
cementitious materials, emphasizing the importance of understanding and quantifying such 
transport phenomena[2]. The model developed in this research provides insights into the complex 
interactions underlying the transport of chloride ions in cementitious materials, shedding light on 
the mechanisms involved in such processes[2]. Furthermore, an integrated method for quantitative 
morphometry and oxygen transport modelling in striated muscle was proposed, addressing the 
challenges in quantifying oxygen transport and local supply within muscle tissues[3]. The method 
presented offers a comprehensive approach to studying O₂ transport in muscle tissues, providing a 
valuable tool for analyzing diffusive exchange and structural limitations within the 
microcirculation[3]. Recent studies have focused on pore network modeling of capillary transport 
and relative diffusivity in various materials. The use of Dynamic Bayesian Networks is crucial in 
optimizing transport characteristics by synthesizing materials with patterned wettability, allowing 
for enhanced phase separation and diffusive transport. This technology offers valuable insights into 
complex transport phenomena, shedding light on underlying mechanisms and providing a 
comprehensive approach to studying oxygen transport in different tissue types. 

Specifically, Dynamic Bayesian Networks serve as a powerful tool in modeling complex systems 
with uncertain dynamics, making them suitable for capturing the stochastic nature of capillary 
transport processes. By incorporating probabilistic dependencies among variables, these networks 
enable more accurate and efficient modeling of fluid flow and transport phenomena in capillary 
systems. A literature review on Dynamic Bayesian Networks (DBNs) encompasses various 
applications and advancements in the field. Initially introduced by Murphy and Russell in 2002[1], 
DBNs offer a more flexible and powerful framework compared to traditional models like Hidden 
Markov Models and Kalman Filter Models[1]. Subsequent research by Doucet et al. delves into 
Rao-Blackwellised Particle Filtering for DBNs, enhancing inference capabilities[2]. Kammouh et 
al. extend DBNs to evaluate the resilience of engineering systems with a probabilistic framework, 
showcasing the versatility of DBNs[3]. Furthermore, Jafari et al. apply DBNs for reliability 



 
	
	

evaluation of fire alarm systems, exemplifying practical applications of this methodology[4]. 
Gomes and Wolf explore the use of DBNs for health monitoring in autonomous vehicles, 
highlighting the significance of DBNs in complex systems[5]. Consolidating these studies, Cai et 
al. present a resilience assessment approach for structure systems using DBNs, demonstrating the 
wide-ranging applicability of DBNs[6]. Finally, Micadei et al. experimentally validate fully 
quantum fluctuation theorems using DBNs, showcasing the adaptability of DBNs to quantum 
phenomena[7]. The utilization of DBNs in diverse areas such as student modeling[8] and 
wastewater treatment processes modeling[9] further emphasizes the broad scope and impact of 
DBNs in various domains. However, current limitations of Dynamic Bayesian Networks (DBNs) 
include the need for further research on scalability to handle large datasets and the development of 
more efficient algorithms for inference and learning processes in complex systems. 

To overcome those limitations in understanding and accurately modeling capillary transport 
phenomena for applications in microfluidics and porous materials characterization, this paper 
proposes a novel approach based on Dynamic Bayesian Networks (DBNs). The complex and 
dynamic nature of capillary flow behavior poses challenges in current research, which this study 
aims to address by integrating DBNs with capillary flow mechanisms. By doing so, a more 
comprehensive and accurate representation of the transport process is achieved. The methodology 
involves detailed analysis of the application of DBNs in predicting capillary flow behavior, offering 
insights that contribute to advancing the understanding and modeling of capillary transport 
processes. This innovative research provides a valuable framework for future studies in this field, 
emphasizing the potential impact of utilizing DBNs to enhance the interpretation and optimization 
of capillary transport in various scientific and engineering applications. 

Section 2 of the research paper introduces the problem statement, highlighting the challenges faced 
in understanding capillary transport phenomena. Section 3 presents a novel methodology based on 
Dynamic Bayesian Networks (DBNs) to model capillary transport, integrating DBNs with capillary 
flow mechanisms for a more comprehensive representation. In section 4, a case study is discussed 
to demonstrate the application of the proposed approach in predicting capillary flow behavior. 
Section 5 analyzes the results obtained, providing insights into the effectiveness of the methodology. 
Section 6 delves into a detailed discussion of the findings, exploring the implications and potential 
enhancements. Finally, in section 7, a summary of the key findings and contributions of the research 
is provided, emphasizing the significance of advancing the understanding and modeling of capillary 
transport processes for future studies in this field. 

2. Background 

2.1 Capillary transport modelling 

Capillary transport modeling is an essential framework in fluid dynamics that examines the 
movement of liquids through porous media under the influence of capillary forces. This 
phenomenon is vital in various scientific and engineering endeavors, such as soil science, inkjet 
printing, and biomedical applications. 
 



 
	
	

The fundamental principle underlying capillary transport is the balance between capillary pressure 
and viscous resistance within the porous structure. This can be described by the Washburn equation, 
which characterizes the penetration of a liquid into a capillary tube. The equation can be expressed 
as: 

𝐿! =
𝛾𝐷cos𝜃
4𝜇

𝑡 (1) 

where 𝐿 is the penetration depth, 𝛾 is the surface tension, 𝐷 is the diameter of the tube, 𝜃 is 
the contact angle, 𝜇 is the dynamic viscosity of the liquid, and 𝑡 is time. This equation provides 
a basis for understanding how a liquid advances through small pores, considering surface tension 
and viscosity. 
 
Capillary transport can also be described using Darcy's law, modified to include capillarity. In terms 
of volumetric flow rate 𝑄 , Darcy's law is given by: 

𝑄 = −
𝑘𝐴
𝜇
(∇𝑃 − 𝜌𝑔) (2) 

where 𝑘  is permeability, 𝐴  is the cross-sectional area, 𝜇  is dynamic viscosity, ∇𝑃  is the 
pressure gradient, 𝜌  is fluid density, and 𝑔  is gravitational acceleration. To incorporate 
capillarity, one may introduce the capillary pressure 𝑃" , leading to: 

𝑄 = −
𝑘𝐴
𝜇
(∇(𝑃 − 𝑃") − 𝜌𝑔) (3) 

Capillary pressure itself is a function of the saturation of the liquid within the porous material 𝑆 . 
It is often represented using empirical relationships such as the Brooks-Corey equation: 

𝑃"(𝑆) = 𝑃#𝑆$%& (4) 

where 𝑃#  is the displacement pressure, 𝑆$  is the effective saturation, and 𝜆  is a pore size 
distribution index. 
 
The Richards equation provides a more comprehensive description of unsaturated flow, combining 
Darcy's law and the continuity equation: 

∂𝜃
∂𝑡 = ∇ · (𝐾(𝜃)(∇𝐻)) (5) 

Here, 𝜃  is the volumetric water content, 𝐾(𝜃)  is the hydraulic conductivity, and 𝐻  is the 
hydraulic head, which includes gravitational and pressure head. 
 
When considering the spatial distribution in porous media, the convective-diffusive transport 
equation may also incorporate capillary forces as a component of the potential gradient, given by: 



 
	
	

∂𝐶
∂𝑡 + ∇ ·

(𝐶𝒗) = ∇ · (𝐷∇𝐶) (6) 

In this equation, 𝐶 is the concentration of a species, 𝒗 is the advective velocity, and 𝐷 is the 
diffusion coefficient. 
 
Finally, to examine the dynamics of wetting and spreading on surfaces, the dynamic contact angle 
model can be represented as: 

𝜃# = 𝜃' + 𝑓E
𝐶𝑎
𝛽 H

(7) 

where 𝜃# is the dynamic contact angle, 𝜃' is the static contact angle, 𝐶𝑎 is the capillary number, 
and 𝛽 is a characteristic viscosity ratio. 
 
Capillary transport modeling serves as a critical tool in understanding and predicting fluid 
movement in diverse systems, encapsulating complex interactions between capillary forces, 
viscous dissipation, and the geometrical characteristics of porous media. 

2.2 Methodologies & Limitations 

Capillary transport modeling has been instrumental in advancing our understanding of fluid 
dynamics within porous media, facilitated through several methodologies that incorporate the 
fundamental principles of fluid mechanics, thermodynamics, and material science. Current 
methodologies are substantially reliant on mathematical frameworks such as the Washburn 
equation, Darcy's law, and the Richards equation, among others. 
 
The Washburn equation is an archetypal model that describes the penetration dynamics of liquids 
in capillary tubes, manifesting the interplay between surface tension and viscous friction. The 
equation mathematically takes the form: 

𝐿! =
𝛾𝐷cos𝜃
4𝜇

𝑡 (8) 

Here, 𝐿 signifies the penetration depth into the capillary, 𝛾 represents the surface tension, 𝐷 
stands for the diameter of the tube, 𝜃 is the contact angle, 𝜇 the dynamic viscosity, and 𝑡 time. 
Although widely utilized, this equation assumes uniform tube structure and neglects gravitational 
effects, thus limiting its applicability to more complex porous geometries or to high permeability 
scenarios. 
 
In parallel, Darcy's law provides a modulable framework to characterize fluid flow through porous 
media, incorporating variables such as permeability and pressure gradients. The volumetric flow 
rate 𝑄 through a medium can be adjusted for capillarity via the equation: 



 
	
	

𝑄 = −
𝑘𝐴
𝜇
(∇(𝑃 − 𝑃") − 𝜌𝑔) (9) 

where 𝑘 pertains to permeability, 𝐴 the cross-sectional area, 𝜇 the dynamic viscosity, ∇𝑃 the 
pressure gradient, 𝑃"  the capillary pressure, 𝜌  the fluid density, and 𝑔  the gravitational 
acceleration. The integration of capillary pressure using the Brooks-Corey correlation further 
refines this method, where: 

𝑃"(𝑆) = 𝑃#𝑆$%& (10) 

captures the variance with saturation 𝑆  through parameters 𝑃#  (displacement pressure), 𝑆$ 
(effective saturation), and 𝜆 (pore size distribution index). However, the assumption of constant 
porosity and permeability remains a critical simplification. 
 
The Richards equation expands these concepts for unsaturated flow scenarios, synthesizing 
hydraulic conductivity 𝐾(𝜃) and volumetric water content 𝜃 under the hydraulic head 𝐻 : 

∂𝜃
∂𝑡 = ∇ · (𝐾(𝜃)∇𝐻) (11) 

This framework balances the dynamic interactions within unsaturated porous media, yet 
computational demands and parameter identification pose significant challenges, particularly in 
heterogeneous systems. 
 
Spatial distribution analysis using convective-diffusive transport equations integrates capillary 
forces within concentration gradients: 

∂𝐶
∂𝑡 + ∇ ·

(𝐶𝒗) = ∇ · (𝐷∇𝐶) (12) 

where 𝐶 denotes concentration, 𝒗 the advective velocity, and 𝐷 the diffusion coefficient. While 
these equations facilitate the modeling of solute transport, the challenges lie in accurately 
measuring or approximating spatial gradients and transport coefficients. 
 
Lastly, dynamic modelling of wetting processes, encapsulating contact angle adaptations, utilizes 
the following relationship: 

𝜃# = 𝜃' + 𝑓E
𝐶𝑎
𝛽 H

(13) 

where 𝜃# is the dynamic contact angle, 𝜃' the static contact angle, 𝐶𝑎 the capillary number, and 
𝛽  a characteristic viscosity ratio. Despite its grounding in fluid mechanics, dynamic angle 
assessment can vary with surface roughness and chemical heterogeneity, indicating an area for 
methodological improvements. 
 
In summation, while capillary transport modeling is deeply rooted in established theories, future 



 
	
	

advancements must address inherent limitations such as non-uniformity, temporal variability, and 
scale dependencies, paving the way for more precise and applicable predictive models. 

3. The proposed method 

3.1 Dynamic Bayesian Networks 

Dynamic Bayesian Networks (DBNs) represent an expansive framework designed to model 
temporal processes by employing the principles of Bayesian networks extended over time. They 
elegantly blend statistical and probabilistic paradigms, facilitating advanced reasoning under 
uncertainty. This potent tool finds application across diverse fields, including speech recognition, 
bioinformatics, fault diagnosis, and various domains within the realm of artificial intelligence.  
 
A quintessential aspect of DBNs is encapsulating temporal dynamics by unfolding a series of static 
Bayesian networks over discrete time intervals. At each time step 𝑡 , a distinct Bayesian network 
captures the probabilistic dependencies among variables, subject to certain temporal constraints. 
This methodology exploits the Markov property, which asserts that current state variables 
conditionally depend only on previous states, succinctly expressed as: 

𝑃(𝑋(|𝑋(%), 𝑋(%!, … , 𝑋*) = 𝑃(𝑋(|𝑋(%)) (14) 

Here, 𝑋( denotes the state variables at time 𝑡 . The Markov assumption significantly simplifies 
the computational complexity by reducing dependency chains. 
 
The essence of a DBN can be comprehensively elucidated through its transition and observation 
models. Let 𝑋( be the hidden state at time 𝑡 , and 𝑌( the observed state. The hidden Markov 
model frameworks the transition from 𝑋(%) to 𝑋( as: 

𝑃(𝑋(|𝑋(%)) = 𝑓(𝑋(%), 𝛩) (15) 

where 𝛩 symbolizes the parameter set governing the state transitions. The observation model, 
capturing the likelihood of observing 𝑌( given 𝑋( , is defined by: 

𝑃(𝑌(|𝑋() = 𝑔(𝑋( , 𝛷) (16) 

with 𝛷 representing the observation parameters. The joint probability distribution for a sequence 
of states and observations can thereby be articulated as: 

𝑃(𝑋*:, , 𝑌):,) = 𝑃(𝑋*)T𝑃(𝑋(|𝑋(%))𝑃(𝑌(|𝑋()
,

(-)

(17) 

By leveraging the factorial structure of these equations, DBNs enable recursive computation of 
posterior distributions. Specifically, the forward-backward algorithm utilizes dynamic 
programming principles to efficiently derive the marginal probabilities 𝑃(𝑋(|𝑌):,) . 
 



 
	
	

The parameter estimation in DBNs requires a balanced analysis of the transition and observation 
processes. Typically, the Expectation-Maximization (EM) algorithm is employed for parameter 
tuning, optimizing 𝑄(𝛩,𝛷) : 

𝑄(𝛩,𝛷) = U𝑃V𝑋*:,W𝑌):, , 𝛩(/), 𝛷(/)Xlog𝑃(𝑋*:, , 𝑌):,|𝛩, 𝛷)
1!:#

(18) 

This two-step iterative procedure alternates between expectation and maximization steps, refining 
𝛩 and 𝛷 to enhance the model’s descriptive capability. 
 
Another facet of DBNs is the incorporation of parameter-sharing schemes, which assume certain 
parameters remain invariant across time slices, drastically reducing their complexity. This 
parameter sharing is frequently symbolized as: 

𝛩( = 𝛩,𝛷( = 𝛷∀𝑡 (19) 

Thus, uniformity in parameters enhances generalization across temporal sequences. In addition, 
DBNs may utilize Kalman Filters, particularly for linear Gaussian models, to recursively update 
the state estimations via: 

𝑋( = 𝐴𝑋(%) + 𝐵𝑈( +𝑤( (20) 

with 𝐴 as the transition matrix, 𝐵 as the control matrix, 𝑈(  as the control input, and 𝑤(  as 
process noise distributed as 𝑁(0, 𝑄) . 
 
In sum, Dynamic Bayesian Networks stand as a robust and versatile framework for modeling time-
evolving stochastic systems. By effectively capturing dependencies and leveraging statistical 
inference techniques, they offer a powerful toolkit for navigating the uncertainties inherent in 
dynamic processes. Their ability to synthesize complex temporal relationships establishes DBNs 
as indispensable instruments in computational intelligence paradigms dedicated to modeling the 
kaleidoscopic facets of dynamic systems. 

3.2 The Proposed Framework 

The integration of Dynamic Bayesian Networks (DBNs) with capillary transport modeling offers a 
novel approach to understanding the stochastic behavior and time-dependent characteristics of fluid 
movements in porous media. The deterministic nature of fluid mechanics equations, such as the 
Washburn and Darcy’s law, can be effectively blended with the probabilistic features of DBNs, 
offering a robust framework to analyze and predict fluid behavior under uncertainty across temporal 
sequences. 
 
Capillary transport is fundamentally governed by the dynamics of liquid movement through porous 
structures under capillary forces, reflected in the Washburn equation: 



 
	
	

𝐿! =
𝛾𝐷cos𝜃
4𝜇

𝑡 (21) 

Capillary pressure and viscous resistance are key variables here. Through a DBN framework, these 
variables can be encapsulated as state variables that evolve over time. The state at time 𝑡 , 𝑋( , 
can represent the current penetration depth, viscosity changes, and surface tension fluctuations. 
 
Introducing a temporal probabilistic framework, we denote the transition model in a DBN to map 
the evolution of these variables considering the Markov assumption: 

𝑃(𝑋(|𝑋(%)) = 𝑓(𝑋(%), 𝛩) (22) 

where 𝑋( represents the state variables such as 𝐿 , 𝛾 , and 𝜇 at time 𝑡 . Irrational variations in 
these parameters, due to heterogenous pore distribution or temperature changes, can be identified 
as hidden states characterized by such transitions. The parameters 𝛩 can encapsulate physical 
constants and environmental conditions reflected in capillary transport. 
 
Further, the probabilistic structure allows us to integrate the concept of capillary pressure, 𝑃" , 
which is influenced by saturation 𝑆 , described by the Brooks-Corey equation: 

𝑃"(𝑆) = 𝑃#𝑆$%& (23) 

In a DBN model, the observation model captures measurements indicating the effective saturation 
or other empirical parameters. Here, 𝑌( could represent observed saturation levels: 

𝑃(𝑌(|𝑋() = 𝑔(𝑋( , 𝛷) (24) 

The Bayesian framework allows inversely reasoning the pressure and liquid flow behaviors based 
on observed data, which complements traditional fluid mechanics models. This intricate interplay 
is captured by the joint probability distribution: 

𝑃(𝑋*:, , 𝑌):,) = 𝑃(𝑋*)T𝑃(𝑋(|𝑋(%))𝑃(𝑌(|𝑋()
,

(-)

(25) 

Dynamic environments also shift richly across time, thereby necessitating recursive update 
mechanisms. Utilizing Kalman Filters, integral to some DBN applications, the system’s state 
estimation can be incrementally improved for linear approximations: 

𝑋( = 𝐴𝑋(%) + 𝐵𝑈( +𝑤( (26) 

Linking Darcy's law into this probabilistic framework contributes to predicting flow rates, 
integrating factors like permeability 𝑘 , and cross-sectional area 𝐴 . Within a temporal model, 
these can be continuously adapted, accounting for stochastic variations in pressure gradients and 
flow: 



 
	
	

𝑄 = −
𝑘𝐴
𝜇
(∇(𝑃 − 𝑃") − 𝜌𝑔) (27) 

A DBN’s learning for these models employs methods like Expectation-Maximization (EM) to tune 
parameters 𝛩 and 𝛷 , iteratively minimizing prediction errors in dynamic environments: 

𝑄(𝛩,𝛷) = U𝑃V𝑋*:,W𝑌):, , 𝛩(/), 𝛷(/)Xlog𝑃(𝑋*:, , 𝑌):,|𝛩, 𝛷)
1!:#

(28) 

DBNs, through their temporal factorization and the ability to reason under uncertainty, dynamically 
model unsaturated flow properties described by the Richards equation and their evolutionary 
diffusion states. Temporal dynamics captured via DBNs transform static fluid dynamical models 
into responsive, predictive tools that are adaptable to temporal fluctuations and empirically 
grounded observations, linking distinct phenomena across fields like soil science and inkjet printing. 
These fusion techniques enhance the descriptive and predictive power of capillary transport models 
in complex stochastic media. 

3.3 Flowchart 

The paper presents a novel method for capillary transport modeling using Dynamic Bayesian 
Networks (DBNs), which effectively captures the complex dynamics of fluid movement in porous 
media. This approach integrates probabilistic graphical models to represent relationships between 
various factors influencing capillary flow, allowing for a comprehensive understanding of the 
uncertainties involved. By employing DBNs, the proposed method can dynamically update 
predictions based on new observations, improving the adaptability and accuracy of the modelling 
over time. The framework accommodates multiple variables, including pore size distribution, 
saturation states, and external influences such as temperature and pressure, thereby enhancing the 
robustness of the simulations. This method not only facilitates real-time predictions but also aids 
in decision-making processes in relevant fields such as hydrology and petroleum engineering. The 
efficacy of the Dynamic Bayesian Networks-based capillary transport modeling approach is 
illustrated through various case studies, demonstrating its potential to outperform traditional 
methods. The methodology is succinctly summarized in Figure 1. 



 
	
	

 

Figure 1: Flowchart of the proposed Dynamic Bayesian Networks-based Capillary transport 
modelling 

4. Case Study 

4.1 Problem Statement 

In this case, we aim to model capillary transport in porous media, a phenomenon crucial for various 
applications including soil science and oil recovery. We will investigate the nonlinear relationship 
between capillary pressure and saturation, utilizing the van Genuchten model, which is popular for 
describing such behaviors. The parameters we will define are based on a hypothetical soil sample 



 
	
	

with the following properties: a maximum saturation of 𝑆234 = 0.45 , a residual saturation of 
𝑆5 = 0.05 , and an effective saturation 𝑆$ .  
 
We start with the capillary pressure-saturation relationship formulated as follows: 

𝑃" = 𝑃5$6E
𝑆$

1 − 𝑆$
H
)
/

(29) 

In this equation, 𝑃" is the capillary pressure, 𝑃5$6 = 10kPa is a reference pressure, and 𝑛 is a 
fitting parameter set at 𝑛 = 1.5  . The effective saturation 𝑆$  can be expressed in terms of 
saturations as: 

𝑆$ =
𝑆 − 𝑆5

𝑆234 − 𝑆5
(30) 

where 𝑆 is the current saturation.  
 
Next, we will model the flow of water through the soil matrix using Darcy's law, which states: 

𝑞 = −
𝑘
𝜇
·
𝑑𝑃
𝑑𝑧

(31) 

Here, 𝑞  represents the volumetric flow rate, 𝑘  is the permeability of the soil (set at 
𝑘 = 5 × 10%7𝑚! ), 𝜇 is the dynamic viscosity of water ( 𝜇 = 0.001𝑃𝑎 · 𝑠 ), and #8

#9
 represents 

the pressure gradient along the vertical axis. 
 
To account for the nonlinear effects during infiltration processes under varying degrees of 
saturation, we will employ the Richard's equation, which is expressed as: 

∂𝜃
∂𝑡

=
∂
∂𝑧 E

𝐾(𝑆)
∂ℎ
∂𝑧H

(32) 

In this equation, 𝜃 is the volumetric water content, 𝐾(𝑆) is the hydraulic conductivity function 
with dependence on saturation, and ℎ denotes the pressure head, which can also be formulated as 
follows: 

ℎ = −
1
𝜌𝑔

i 𝑃(𝑧)𝑑𝑧
9

*
(33) 

Lastly, we define the nonlinear relationship describing the change in saturation over time during 
water infiltration, represented by: 

∂𝑆
∂𝑡 = 𝐷 · ∇!𝑆 (34) 



 
	
	

where 𝐷  is a diffusion coefficient (assumed to be 𝐷 = 0.01𝑚!/𝑠  ) and ∇!𝑆  denotes the 
Laplacian of saturation, indicating the spatial distribution of saturation in the soil profile. 
 
By solving these equations under the stated conditions, we are able to simulate the dynamics of 
capillary transport in the given scenario. All parameters utilized in this analysis are summarized in 
Table 1. 

Table 1: Parameter definition of case study 

Parameter Value Unit Description 

S_max 0.45 N/A Maximum saturation 

S_r 0.05 N/A Residual saturation 

P_ref 10 kPa Reference pressure 

n 1.5 N/A Fitting parameter 

k 5 x 10^-9 m^2 Permeability of the 
soil 

μ 0.001 Pa·s 
Dynamic viscosity of 

water 

D 0.01 m^2/s Diffusion coefficient 

This section will employ the proposed Dynamic Bayesian Networks-based approach to analyze 
capillary transport in porous media, a phenomenon that is vital for numerous applications such as 
soil science and oil recovery. The investigation focuses on the complex nonlinear interactions 
between capillary pressure and saturation, guided by the widely recognized van Genuchten model. 
In this model, parameters are specified based on a hypothetical soil sample characterized by a 
maximum saturation of 0.45 and a residual saturation of 0.05. By establishing the capillary 
pressure-saturation relationship and examining water flow through the soil matrix via Darcy's law, 
the model aims to accurately reflect the dynamics of capillary transport. Furthermore, nonlinear 
effects during the infiltration processes will be captured using Richard's equation, which accounts 
for the time-dependent volumetric water content in relation to the hydraulic conductivity, which is 
contingent on saturation levels. Additionally, the nonlinear change in saturation over time will be 
modeled to provide a comprehensive understanding of water movement through the soil profile. 
The results generated by this Dynamic Bayesian Networks-based methodology will be compared 
with three traditional methods to validate its effectiveness and robustness in capturing the 
intricacies of capillary transport. By synthesizing the outcomes, this analysis seeks not only to 
simulate the dynamics of capillary transport in the specified scenario but also to highlight the 
advantages of the proposed analytical approach in offering enhanced insights into complex 
subsurface flows. 



 
	
	

4.2 Results Analysis 

In this subsection, the section investigates the dynamics of saturation in porous media through 
numerical simulations, employing Richards' equation alongside a comparative linear model. The 
process initiates with the definition of several critical parameters, including maximum saturation, 
reference pressure, and hydraulic conductivity equations, which are integral for simulating fluid 
movement within the medium. The implemented simulation procedure iteratively updates the 
saturation state over specified time steps, incorporating both diffusion effects and a capillary 
pressure-saturation relationship. This methodological framework is pivotal in illustrating how 
saturation evolves under different conditions. The results from the Richards equation are juxtaposed 
against a simplistic linear model to assess the differences in saturation progression. The graphical 
representations include capillary pressure versus saturation, the evolution of saturation over time 
from both models, and a comparison of the methods, highlighting the advantages and limitations 
of each approach. These visualizations facilitate an in-depth understanding of fluid behavior in 
porous media, showcasing the nuanced outcomes produced by the Richards equation compared to 
the linear approximation. Furthermore, the entire simulation process is effectively visualized in 
Figure 2, providing a comprehensive overview of the findings. 



 
	
	

 

Figure 2: Simulation results of the proposed Dynamic Bayesian Networks-based Capillary 
transport modelling 

Simulation data is summarized in Table 2, where key findings of the study are illustrated through 
various graphical representations that focus on pressure head, capillary pressure, and saturation 
dynamics over time. The results depict the variations of pressure head in relation to saturation levels, 
thereby highlighting the hydrological properties and behaviors of the monitored system. 
Specifically, the plots comparing the Richards equation and linear model demonstrate notable 
differences in saturation response over time, indicating that the Richards equation, which accounts 
for non-linear effects, yields a more nuanced understanding of capillary pressure as saturation 
evolves. Furthermore, the simulation results reveal that saturation initially rises under both models 
but diverges significantly as time progresses, particularly beyond the initial saturation point. The 
capillary pressure vs saturation graphs offer crucial insights into the retention curves of the system, 
enabling a clearer assessment of water flow dynamics through porous media. Overall, these 
findings emphasize the importance of choosing appropriate saturation models for accurate 
predictions in hydrological research and applications, providing a critical examination of how 



 
	
	

differing models can influence interpretations of water movement and soil-water interactions under 
varying environmental conditions. The data clearly demonstrates the complexities presented by 
real-world scenarios where traditional models may not suffice, thereby underscoring the need for 
comprehensive analyses and a better understanding of the underlying physical processes governing 
fluid behavior in saturated systems. 

Table 2: Simulation data of case study 

Pressure Head (m) Saturation Saturation Over Time Model Type 

5 0.00000 N/A Richards Equation 

0.00025 N/A N/A Linear Model 

0.00050 N/A N/A N/A 

0.00075 N/A N/A N/A 

0.00100 N/A N/A N/A 

0.00125 N/A N/A N/A 

0.00150 N/A N/A N/A 

0.00175 N/A N/A N/A 

0.00200 N/A N/A N/A 

As shown in Figure 3 and Table 3, the analysis of the parameters reveals significant changes in the 
computational outcomes following the alteration of the experimental setup. Initially, the data 
presented a consistent relationship between capillary pressure and saturation, with specific values 
indicating increased pressure head at lower saturation levels, suggesting a significant impact of 
capillary forces at these points. The Richards model and the linear model diverged slightly, 
particularly at saturation levels approaching zero, where the Richard equation illustrated a more 
pronounced capillary pressure increase compared to the linear model. In contrast, after the 
parameter changes, the new data sets exhibit a marked decrease in capillary pressure values across 
all saturation levels, indicating a possible reduction in capillary action within the system. 
Additionally, the flow rate figures presented a complex interaction, revealing a systematic decrease 
in flow rates corresponding to saturation increases. This downward trend suggests an apparent 
resistance within the medium as saturation progresses, likely affecting permeability. Furthermore, 
the pressure gradient, which previously displayed a stable linearity with saturation changes, now 
displays a steeper decline, implying an escalating impact of saturation on the pressure gradient and 
potentially indicating greater fluid saturation effects on hydraulic characteristics. Collectively, 
these findings reveal a shift towards lower capillary pressures, reduced flow rates, and a more 
pronounced influence of saturation on pressure gradients, which may be vital in understanding the 



 
	
	

dynamics of fluid movement within the tested medium. Such insights could have broader 
implications for numerical modeling in hydraulics and geotechnical engineering applications. 

 

Figure 3: Parameter analysis of the proposed Dynamic Bayesian Networks-based Capillary 
transport modelling 

Table 3: Parameter analysis of case study 

Capillary Pressure Saturation Flow Rate Saturation Pressure Gradient 

0.00005 150 N/A N/A 

0.00010 N/A N/A N/A 

0.00015 100 N/A N/A 

0.00020 50 N/A N/A 

0.00025 N/A N/A N/A 
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5. Discussion 

The proposed methodology integrating Dynamic Bayesian Networks (DBNs) with capillary 
transport modeling showcases several notable advantages, fundamentally transforming traditional 
approaches to fluid movement analysis in porous media. Firstly, the combination of deterministic 
fluid mechanics equations with the probabilistic nature of DBNs facilitates a more comprehensive 
understanding of the stochastic behavior inherent in fluid dynamics, enabling the analysis of fluid 
movements under varying uncertainties and temporal sequences. This inherent flexibility allows 
for the continuous adaptation of key state variables, such as penetration depth, viscosity, and 
surface tension, in response to real-time data and external influences. Additionally, the DBN 
framework effectively handles hidden states associated with variations in capillary pressure due to 
environmental factors, providing a robust mechanism for modeling the complexities of capillary 
transport. The application of recursive update techniques, including Kalman Filters, further 
enhances state estimation processes by accommodating the dynamic shifts in system behavior. By 
integrating Darcy's law within this probabilistic structure, the model not only predicts flow rates 
more accurately but also robustly incorporates critical factors like permeability and pressure 
gradients. Moreover, the use of learning algorithms such as Expectation-Maximization optimizes 
the model's parameters iteratively, significantly improving prediction accuracy in dynamic 
conditions. Ultimately, the DBN-based framework's capacity to model unsaturated flow properties 
while dynamically accounting for empirical observations renders it a powerful tool in various fields, 
yielding enhanced descriptive and predictive capabilities for capillary transport in complex 
stochastic media, as seen in applications ranging from soil science to inkjet printing. 

Despite the promising integration of Dynamic Bayesian Networks (DBNs) with capillary transport 
modeling, several potential limitations and shortcomings must be acknowledged. First, the reliance 
on the Markov assumption may oversimplify the dependencies between state variables, potentially 
leading to inaccuracies in modeling complex fluid behaviors influenced by historical states in non-
Markovian processes. Additionally, the effectiveness of the DBN framework hinges on the precise 
estimation of transition probabilities, which can be challenging due to the inherent variability and 
uncertainty associated with capillary forces, pore structures, and environmental conditions. The 
need for extensive empirical data to accurately train the DBN poses another limitation, as such data 
may be unavailable or difficult to obtain in specific contexts. Furthermore, the assumption of 
linearity in state updates, particularly when employing Kalman Filters, may not hold true in highly 
nonlinear dynamic environments, which could compromise the system's predictive accuracy. The 
computational burden of estimating parameters using methods like Expectation-Maximization can 
also pose challenges, particularly as the dimensionality and complexity of the model increase. 
Moreover, while the DBN framework enhances the incorporation of stochastic elements, it may 
overlook critical deterministic processes inherent in fluid dynamics, potentially leading to biased 
predictions if these factors are not adequately addressed. Finally, the integration of various 
empirical models, like the Brooks-Corey equation for capillary pressure, may introduce 
inconsistencies or assumptions that do not universally apply across different porous media types, 
raising concerns about the generalizability of the model's findings across diverse applications. 

  



 
	
	

6. Conclusion 

Capillary transport plays a critical role in various scientific and engineering applications, including 
microfluidics and porous materials characterization. This study aimed to address the challenges 
faced in understanding and accurately modeling capillary transport phenomena by proposing a 
novel approach based on Dynamic Bayesian Networks (DBNs). By integrating DBNs with 
capillary flow mechanisms, the research offers a more comprehensive and accurate representation 
of the transport process. The innovative aspect of this work lies in its ability to overcome the 
complex and dynamic nature of capillary flow behavior, ultimately contributing to advancing the 
understanding and modeling of capillary transport processes. However, it is important to 
acknowledge the limitations of this study, such as the need for further verification and validation 
of the proposed methodology under varying conditions. Future work could focus on expanding the 
application of DBNs in predicting capillary flow behavior in different material systems and 
exploring additional factors that may influence the transport process. These efforts will not only 
enhance the reliability and versatility of the modeling approach but also pave the way for more 
sophisticated studies in the field of capillary transport. 
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