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Abstract: In the financial market, the design and optimization of stock trading strategies 
have become a key focus for investors. With the globalization and digitization of markets, 
traditional trading strategies often struggle to cope with complex market dynamics, 
especially in environments characterized by high-frequency volatility and multiple 
influencing factors. Deep Reinforcement Learning (DRL), as an emerging intelligent 
algorithm, has shown potential in complex nonlinear markets by learning and optimizing 
strategies through interactions with the market environment. However, existing DRL 
models still face challenges in handling long-term dependencies in time series data and 
market noise. Therefore, this study proposes a deep reinforcement learning framework 
based on TimesNet and self-attention mechanisms, aiming to overcome the limitations of 
traditional methods in time series modeling, complex data feature capturing, and strategy 
optimization. By integrating the multi-scale feature extraction capability of TimesNet 
with the global dependency capturing advantages of self-attention mechanisms, this 
research seeks to enhance the intelligence level and trading effectiveness of stock trading 
strategies, thereby providing investors with more adaptive decision support. 
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1 Introduction 

With the globalization and digitization of markets, the speed and complexity of trading have 
increased significantly, and traditional trading strategies are no longer able to cope with rapidly 
changing market dynamics [1]. Additionally, the stock market is highly volatile and influenced by 
various factors such as economic policies, geopolitical events, market sentiment, etc., making 
market trends difficult to predict [2]. Against this backdrop, designing efficient and intelligent 
trading strategies has become a key challenge [3]. To address these challenges, machine learning 
and deep learning techniques have been widely applied in financial trading in recent years, 
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particularly in the development of automated trading systems, which aim to process vast amounts 
of data in real time and respond quickly to improve returns on investment and reduce risk. The 
integration of automated systems with generative adversarial networks (GANs) and parallel 
computing technologies has enhanced the ability to process and generate complex images and data, 
further strengthening data generation and processing capabilities in financial markets[4]. These 
systems can not only handle complex market conditions but also learn and optimize trading 
strategies autonomously to adapt to constantly changing market environments[5]. Similarly, other 
industries are exploring technological approaches to address global changes, emphasizing the need 
for agility to meet complex market demands[6, 7]. 
 
The stock market is highly complex and uncertain, with price fluctuations influenced by various 
internal and external factors, including economic indicators, political events, market sentiment, 
news, and public opinion. Traditional trading strategies based on technical indicators and 
fundamental analysis have shown significant limitations in such a volatile environment [8]. These 
traditional methods usually rely on linear relationships in historical data or rules set by humans, 
making it difficult to deal with the complex nonlinear characteristics and sudden events in the stock 
market. Additionally, the high-frequency volatility and time-varying nature of the market make 
predicting future market trends a daunting task. In this context, deep reinforcement learning (DRL) 
has gained increasing attention as an adaptive intelligent algorithm[9]. DRL can learn and optimize 
trading strategies by continuously interacting with the environment, making it capable of 
autonomous decision-making in complex and dynamic environments. Compared with traditional 
methods, DRL can learn potential trading strategies from historical stock market data without 
relying on human-defined rules, thus exhibiting greater adaptability and flexibility[10] . Similarly, 
attention-based DCGAN and autoencoder models excel in denoising and feature extraction for 
high-noise data classification, offering valuable insights for complex market data processing[11, 
12]. 
 
However, current DRL algorithms still face many challenges when applied to the stock market. 
Firstly, the time-series nature of market data requires models to have strong capabilities in capturing 
temporal dependencies, and most existing DRL models perform inadequately in handling long-
term dependencies. Secondly, the financial market is highly noisy and non-stationary, with market 
signals often obscured by a large amount of random fluctuations, making it difficult for traditional 
DRL models to extract valuable trading information effectively. Additionally, existing models 
struggle to simultaneously consider short-term volatility and long-term trend changes when dealing 
with the multidimensional and nonlinear characteristics of the market, which limits the 
generalization ability of trading strategies [13]. Recently, deep learning-based denoising models 
have shown significant capability in extracting useful information from high-noise environments, 
with promising applications in financial data processing[14]. Techniques that adapt based on 
customer behavior data have proven highly practical in complex and dynamic market 
environments[15, 16]. Therefore, designing a DRL framework that can better incorporate time-
series features and fully utilize both short-term and long-term information in the market has become 
a key issue in optimizing stock trading strategies. 
 
Most existing DRL methods, such as Deep Q-Network (DQN), Proximal Policy Optimization 
(PPO), etc., rely on traditional neural network structures. These models often overlook long-term 
trends and cross-time-step dependencies when processing long time series in stock market data. 
Moreover, while traditional deep learning architectures (such as Long Short-Term Memory and 
Gated Recurrent Unit have been applied to time-series prediction, they struggle to capture the 
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hidden patterns in the multilayered, nonlinear, and noisy complex data of the market[17]. This 
study proposes a deep reinforcement learning framework based on TimesNet and the self-attention 
mechanism, aiming to address the deficiencies of existing methods in time-series modeling, long-
term dependency capture, and strategy optimization, thereby improving the intelligence and 
effectiveness of stock trading strategies. For example, Self-attention mechanisms in trajectory 
prediction models offer insights for modeling complex financial data[18]. 
 
The main contributions of this paper are as follows: 
1. This paper applies the TimesNet architecture, specifically designed for handling time series data. 
Its modular design effectively captures multi-scale features, significantly enhancing the modeling 
capability for long-term dependencies. Compared to traditional time series models, TimesNet 
demonstrates greater flexibility and adaptability in the application to stock market data. 
 
2. This paper introduces the self-attention mechanism into the optimization of trading strategies, 
leveraging its advantages in processing long time series data. It effectively captures global 
dependencies within the input sequence, thereby improving the model's performance in complex 
market environments. By combining the self-attention mechanism, the model can more accurately 
identify market changes at critical moments, enhancing its ability to handle nonlinear and high-
noise data. Adaptive data modeling has proven effective in analyzing supply chain concentration 
and detecting corporate financial fraud, providing new insights for complex financial markets[19, 
20]. 
 
3. This paper adopts a Deep Reinforcement Learning (DRL) framework for the optimization of 
trading strategies. Through interactions with the market environment, DRL can autonomously learn 
and adjust strategies to adapt to dynamically changing market conditions, demonstrating higher 
flexibility and intelligence in handling complex decision-making tasks. 
 
The structure of this paper is as follows: First, the introduction outlines the background and 
significance of the research, emphasizing the necessity of optimizing trading strategies in financial 
markets. The second section reviews relevant literature, analyzing the limitations of existing 
methods and providing a theoretical foundation for subsequent research. The third section details 
the proposed model architecture, including the specific implementation of TimesNet, the self-
attention mechanism, and deep reinforcement learning. The fourth section describes the 
experimental design and dataset, clarifying the selection of evaluation metrics. Finally, the fifth 
section summarizes the main contributions of the research and discusses the application prospects 
of the findings as well as future research directions. 

2 Related Work 

Early research on stock trading strategies primarily focused on methods based on technical analysis 
and fundamental analysis. Technical analysis relies on historical data such as price and volume and 
uses technical indicators (e.g., moving averages, relative strength index, etc.) to predict future 
market trends. However, these methods are often based on fixed rules and assumptions, making it 
difficult to cope with complex market dynamics and high-frequency trading environments. 
Fundamental analysis, on the other hand, assesses the intrinsic value of a stock by analyzing a 
company's financial condition, macroeconomic trends, and other factors. However, this approach 
requires extensive manual analysis, making it difficult to make rapid decisions in modern financial 
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markets. Therefore, traditional methods have limited performance in handling complex nonlinear 
data and high-frequency trading scenarios. 
 
With the rapid development of deep learning and reinforcement learning, deep reinforcement 
learning (DRL) has gradually been applied to the optimization of stock trading strategies. DRL can 
autonomously learn and optimize strategies through interaction with the market environment, 
without the need for complex human-defined rules, and is suitable for nonlinear and dynamically 
changing financial markets. Common DRL algorithms include DQN , PPO, and Asynchronous 
Advantage Actor-Critic (A3C), among others. Kalva et al. [21] proposed a stock market investment 
strategy based on the DQN in their research. This method combines Q-learning from reinforcement 
learning with deep neural networks to handle high-dimensional state spaces. DQN automatically 
analyzes time series data, predicts stock market trends, and makes stock trades based on this 
information. Chiumera et al. [22] proposed a deep reinforcement learning approach for price 
prediction using the proximal policy optimization (PPO) architecture. This method models 
individual stock market histories, optimizing parameters like learning rate, discount factor, and 
feature space. Results demonstrate that this approach can outperform a buy-and-hold (B&H) 
strategy in certain cases, showing strong transferability and predictive effectiveness. Sumeyra 
Demir et al.[23]proposed a statistical arbitrage trading strategy based on the A3C method, focusing 
on intraday market arbitrage trading by continuously exploiting price differences. 
 
In the financial domain, time series data is a core component in the design of trading strategies [24]. 
Xiao et al. [25]proposed a stock price time series prediction method based on deep learning and the 
autoregressive integrated moving average (ARIMA) model. They combined traditional models and 
machine learning models to solve linear and nonlinear prediction problems, respectively. The study 
used stock samples from the New York Stock Exchange between 2010 and 2019, applying both the 
ARIMA model and the Long Short-Term Memory (LSTM) neural network model for training and 
prediction. Lawi et al.[26] proposed a stock price prediction method based on LSTM and Gated 
Recurrent Unit (GRU), specifically targeting grouped time series data for prediction. To improve 
prediction accuracy, they designed eight new model architectures, combining LSTM and GRU 
models with four types of neural network block architectures. 
 
In recent years, the self-attention mechanism has garnered significant attention due to its successful 
application in natural language processing (NLP). The self-attention mechanism significantly 
improves model performance when handling long time-series data. Unlike traditional RNN 
structures, attention mechanisms can directly capture global dependencies in the input sequence 
without processing the sequence step-by-step, thus improving the model's performance on long-
term dependency data [27]. Wang et al. [28] proposed a stock market index prediction method 
based on the Transformer model. This innovative study applied the Transformer model, initially 
developed for natural language processing, to stock market prediction, leveraging its encoder-
decoder architecture and multi-head attention mechanism to better represent the dynamic 
characteristics of the stock market. TimesNet, a deep neural network specifically designed for 
processing time series data, has emerged in recent years. With its modular design, TimesNet can 
effectively capture multi-scale features in time series[29]. Compared to traditional Recurrent 
Neural Networks (RNNs) or Convolutional Neural Networks (CNNs), TimesNet has significant 
advantages in handling long-term dependencies, especially in financial data applications[30]. Souto 
et al.[31] proposed a stock realized volatility prediction method based on the TimesNet model. His 
research analyzed the effectiveness of TimesNet in capturing extreme market volatility and 
compared its performance with traditional and modern prediction models, particularly on the Root 
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Mean Square Error (RMSE) and Quadratic Likelihood (QLIKE) metrics. Additionally, TimesNet 
can easily integrate other advanced techniques, such as the self-attention mechanism, through its 
flexible structure, further enhancing its performance in trading strategy optimization. 
Although existing DRL and time series modeling methods have made significant progress in 
optimizing stock trading strategies, they still face obvious limitations when dealing with market 
noise, long-term dependencies, and non-stationarity. Liu et al.[32] proposed a financial portfolio 
management model that combines deep reinforcement learning (DRL) with a non-stationary 
Transformer architecture. This model aims to improve insights and robustness in portfolio 
management strategies by decoding complex patterns in financial time series data. The study 
integrated key macroeconomic indicators and news sentiment analysis to comprehensively capture 
market dynamics. Moreover, existing models still need improvement in generalization ability and 
adaptability to market changes. By combining TimesNet with the self-attention mechanism, it is 
expected to further enhance the performance of DRL models in stock trading[33]. This combination 
not only strengthens the model's ability to capture complex temporal dependencies but also 
improves its adaptability to different market conditions, enabling more intelligent and stable trading 
strategy optimization. 

3 Method 

Figure 1 shows the overall architecture of the deep reinforcement learning algorithm based on 
TimesNet and self-attention mechanism proposed in this paper. First, the input time series data 
undergoes initial feature extraction through the CNN module, generating basic feature 
representations. These features are then fed into the Self-Attention module, where the Self-
Attention mechanism captures key dependencies within the sequence by calculating attention 
weights across time steps. The output features are further passed to the TimesNet module. In the 
TimesNet module, the features go through multiple feature extraction layers to obtain multi-scale 
temporal features, capturing both long-term and short-term patterns within the time series data. 
Finally, these multi-scale features are passed to the classifier on the right, where they are used in 
the deep reinforcement learning decision-making process to generate data-driven strategic outputs. 

 

Figure 1. Overall algorithm architecture. 

3.1 TimesNet Architecture 
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TimesNet is a deep learning model specifically designed to handle time series data, aimed at 
capturing multi-scale features within the time series and exhibiting excellent long-term dependency 
capture capability[34]. TimesNet extracts foundational multi-scale features from the input time 
series data, which are essential for capturing complex temporal patterns. The output of this module 
is then passed to the self-attention mechanism for further enhancement of temporal dependencies. 
The architecture diagram of TimesNet is shown in Figure 2. 

 

Figure 2. Structure diagram of TimesNet. 

The basic architecture of TimesNet includes an input layer, multiple time feature extraction 
modules, and an output layer. Assuming the input time series data is X = [x!, x", … , x#], where T 
is the number of time steps. 
 
The input layer transforms the time series data X  into feature representations, which can be 
initially processed through an embedding layer or preprocessing layer. Assuming we perform a 
linear transformation on the data at each time step: 

𝑍 = 𝑊$𝑋 + 𝑏$ (1) 
where W%  is the embedding weight matrix, b%  is the bias term, and Z  is the feature 
representation. 
 
TimesNet processes the data through multiple feature extraction modules to extract multi-scale 
features. Assuming the features output from the l-th module are F('), this can be represented as: 

𝐹()) = 𝑓)(𝑍) (2)  
where f' represents the operation of the l-th module. 
 
By merging features from different scales, TimesNet is able to capture patterns across various time 
ranges. Assuming we combine the outputs from multiple modules, we can obtain the combined 
features through a weighted sum or concatenation: 
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𝐹combined =:α)𝐹())
*

)+!

(3) 

where α' are the fusion weights, and L is the number of feature extraction modules. 
Finally, the combined features pass through a fully connected layer (or other forms of layers) to 
generate the model’s predicted output. Assuming the output is Y?, this can be expressed as: 

𝑌A = 𝑊,𝐹combined + 𝑏, (4) 
Where W- and b- are the weights and biases of the output layer, respectively. The TimesNet 
architecture effectively captures long-term dependencies and complex patterns in time series data 
through multi-level feature extraction and fusion. The resulting multi-scale feature representation 
serves as the input for the self-attention mechanism, allowing the subsequent module to further 
focus on key temporal dependencies in the data. 

3.2 Self-Attention Mechanism 

The self-attention mechanism is an important tool that can capture dependencies between different 
positions in a sequence, widely used in processing long time series data. After receiving the multi-
scale features from TimesNet, the self-attention mechanism applies weighted calculations to these 
features, allowing the model to selectively focus on relevant positions in the sequence. This step 
enhances the model's ability to capture long-range dependencies, making the temporal information 
more explicit for downstream decision-making in the DRL module.[35]. The architecture diagram 
is shown in Figure 3. 

 

Figure 3. Self-Attention Mechanism architecture diagram. 

Assuming the input sequence is X = [x!, x", … , x.] , where each x/  is a vector representing 
features at a time step. The self-attention mechanism first maps the input sequence into three 
different spaces: Query, Key, and Value. These representations can be obtained through the 
following linear transformations: 
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𝑄 = 𝑊0𝑋,𝐾 = 𝑊1𝑋, 𝑉 = 𝑊2𝑋 (5) 
where W3, W4, and W5 are the weight matrices for the Query, Key, and Value, respectively, and 
Q, K, and V represent the matrices of Queries, Keys, and Values. 
 
For each query vector q/ (the i-th row of the Query matrix Q), the self-attention mechanism 
computes its similarity with every key vector k6  (the j-th row of the Key matrix K). This 
similarity is usually measured by the dot product. Specifically, the attention weight between the i-
th query q/ and the j-th key k6 is given by: 

AttentionN𝑞7 , 𝑘8Q =
𝑒𝑥𝑝N𝑞7 ⋅ 𝑘8Q

∑ 𝑒𝑥𝑝N𝑞7 ⋅ 𝑘8Q9
8+!

(6) 

This formula computes the similarity between q/ and each key vector k6 and normalizes these 
similarities into a probability distribution. Each attention weight indicates the degree of focus that 
the query q/  places on different positions within the sequence. Using the computed attention 
weights, the self-attention mechanism then calculates a weighted sum of the value vectors v6 (the 
rows of V) to obtain the final output representation z/ for each query q/: 

𝑧7 =:AttentionN𝑞7 , 𝑘8Q
9

8+!

⋅ 𝑣8 (7) 

Thus, for each query q/ , the output z/  considers information from all positions in the input 
sequence, effectively capturing long-range dependencies. The resulting enhanced feature 
representation is then passed to the DRL module, which uses it as the basis for decision-making. 

3.3 Deep Reinforcement Learning 

Deep Reinforcement Learning (DRL) is an algorithmic framework that combines deep learning 
and reinforcement learning, aimed at learning optimal strategies to maximize cumulative rewards 
through interactions with the environment. In our framework, the DRL module receives the 
attention-enhanced features from the self-attention mechanism as its input state representation. 
These features provide rich, multi-scale temporal information that aids in formulating robust 
trading strategies in dynamic financial markets[36]. 
 
In reinforcement learning, the agent interacts with the environment. At each time step t, the agent 
observes the environment state s:, selects an action a: according to the current policy π, and 
receives a reward r:  and the next state s:;!  from the environment. This process can be 
represented by the following equations: 

𝑠<;! = 𝑓(𝑠< , 𝑎<) (8) 
𝑟< = 𝑅(𝑠< , 𝑎<) (9) 

Where f is the state transition function and R is the reward function.  
 
The core goal in DRL is to learn an optimal policy π∗ that enables the agent to maximize its 
expected cumulative reward. This expected reward can be represented by the value function V>(s): 

𝑉?(𝑠) = 𝐸[∑ 𝛾@𝑟<;@A
@+B ∣∣ 𝑠< = 𝑠 ] (10) 

where γ  is the discount factor used to weigh short-term and long-term rewards. The agent 
optimizes its policy to maximize the value function, often using policy gradient methods for updates. 
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In DRL, deep learning models are employed to approximate the value function or policy function. 
Assuming we use a deep neural network to approximate the policy πC(a|s) and the value function 
VD(s), we can optimize the network parameters θ and ϕ using the following loss functions: 

𝐿policy(𝜃) = −𝐸[𝑙𝑜𝑔 𝜋E (𝑎<|𝑠<)𝐴<] (11) 
where A: is the advantage function used to measure the relative quality of an action[37]. 

𝐿value(𝜙) = 𝐸 {N𝑉F(𝑠<) − 𝑅<Q
"
| (12) 

In this process, the agent continuously updates its policy and value function by collecting 
experiences from the environment, gradually improving its performance in a specific trading 
environment. By using the multi-scale, attention-enhanced features generated by TimesNet and the 
self-attention mechanism, the DRL agent is better equipped to handle the complexities of financial 
markets and adaptively learn optimal trading strategies. 

4 Experiment 

4.1 Experimental Environment 

The experimental environment of this study includes high-performance hardware and specialized 
software configurations. On the hardware side, the experiments were conducted on a computer 
equipped with an Intel Core i7-10700K processor, featuring 32 GB of DDR4 memory and an 
NVIDIA GeForce RTX 3080 graphics card, which can efficiently handle complex deep learning 
models and accelerate the training process. Additionally, a 1 TB SSD ensures fast data read and 
write speeds. On the software side, the experiments were run on the Ubuntu 20.04 LTS operating 
system, utilizing Python 3.8 as the programming language and TensorFlow 2.5 as the deep learning 
framework, along with Pandas and NumPy for data processing, and Matplotlib and Seaborn for 
visualization. This combination of hardware and software provides strong support for model 
construction and evaluation, ensuring the efficiency and accuracy of the experiments. 

4.2 Experimental Data 

• Yahoo Finance Stock Dataset 
This dataset is sourced from Yahoo Finance and includes historical stock trading data for hundreds 
of publicly traded companies, covering a time span from 2000 to the present. It contains daily 
opening prices, closing prices, highest and lowest prices, and trading volumes, providing rich time 
series information. Researchers can utilize this dataset for technical analysis to identify trends, 
volatility, and cyclical patterns, as well as for strategy backtesting and simulation trading. 
Additionally, the dataset supports comparative studies across different market environments, aiding 
in the understanding of diversified investment portfolio performance[38]. 
 
• Kaggle Stock Price Dataset 
This dataset is obtained from the Kaggle platform and includes stock trading data for multiple 
companies in major global markets, with a wide-ranging and comprehensive time coverage. It 
comprises daily opening prices, closing prices, highest and lowest prices, and trading volumes for 
each company, making it suitable for training and testing various machine learning and deep 
learning models. Kaggle's dataset also provides related market information, such as the 
performance of index constituents, allowing researchers to conduct multi-level market analyses and 
explore the interrelations and dynamic changes of market trends[39]. 
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• S&P 500 Component Stock Dataset 
This dataset focuses on the component stocks of the S&P 500 index, recording their historical 
trading data, including opening prices, closing prices, and trading volumes, typically covering 
records from 2010 to the present. Researchers can analyze the overall health of the market using 
this dataset, as well as the relative performance of different sectors and companies. This enables 
investors to identify changes in market cycles and develop corresponding investment strategies to 
address the challenges of bull and bear markets[40]. 
 
• Stock News Sentiment Dataset 
This dataset integrates a large number of news articles related to the stock market along with their 
sentiment analysis results, providing publication dates, titles, and sentiment scores for each article. 
The sentiment scores are based on natural language processing techniques that quantify the positive 
and negative emotional tones of news reports. Researchers can use this dataset to analyze how 
market sentiment influences stock price fluctuations and to develop sentiment-based trading 
models combined with market data. This dataset is valuable for capturing the rapidly changing 
market dynamics and assessing the immediacy and persistence of stock market reactions to news 
events[41]. 

4.3 Evaluation Metrics 

• Accuracy 
Accuracy is the ratio of correctly predicted instances to the total instances in the dataset. It is defined 
as: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(13) 

Where TP (True Positive) refers to the correctly predicted positive instances, TN (True Negative) 
denotes the correctly predicted negative instances, FP (False Positive) indicates the incorrectly 
predicted positive instances, and FN (False Negative) represents the incorrectly predicted negative 
instances.  
 
• Precision 
Precision measures the proportion of true positive predictions among all positive predictions. It 
indicates the accuracy of the positive predictions made by the model. The formula for precision is: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(14) 

A high precision value indicates that the model has a low false positive rate, meaning most 
predicted positive instances are indeed positive. 
 
• Recall 
Recall, also known as Sensitivity or True Positive Rate, assesses the proportion of actual positive 
instances that were correctly identified by the model. It is calculated as follows: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(15) 

A high recall value signifies that the model successfully identifies a large proportion of positive 
instances, reducing the false negative rate. 
 
• F1 Score 
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The F1 Score is the harmonic mean of Precision and Recall, providing a single metric that balances 
both the precision and the recall. It is particularly useful in scenarios where there is an uneven class 
distribution. The formula for the F1 Score is: 

𝐹1 = 2 ×
Precision × Recall
Precision+ Recall

(16) 

The F1 Score ranges from 0 to 1, with 1 being the best possible score, indicating optimal precision 
and recall. 
 
4.4 Experimental Comparison and Analysis 

The following table provides a comprehensive comparison of our proposed method with various 
established models across four different datasets, including the Yahoo Finance Stock Dataset, 
Kaggle Stock Price Dataset, S&P 500 Component Stock Dataset, and Stock News Sentiment 
Dataset. This comparison evaluates key performance metrics—accuracy, precision, recall, and F1-
score—to assess the effectiveness of each model in stock prediction tasks. 
 

Table1. Comparison of relevant indicators of the proposed method with other methods on four 
datasets. 

Model 
Yahoo Finance Stock Dataset Kaggle Stock Price Dataset 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Wang et al.[42] 88.58 89.55 91.86 90.69 91.52 92.98 91.72 92.35 

Li et al.[43] 87.56 89.15 89.58 89.36 90.98 93.00 88.82 90.86 

Bhandari et al.[44] 89.80 88.66 90.62 89.63 91.63 89.30 91.18 90.23 

Verma et al.[45] 87.87 89.51 87.19 88.33 89.29 91.51 91.58 91.54 

Jiang et al.[46] 87.47 90.17 91.48 90.82 91.13 92.96 88.27 90.55 

Sharma et al.[47] 87.73 88.36 89.50 88.93 89.78 88.51 91.19 89.83 

Ours 92.65 94.21 93.82 94.01 93.64 94.53 92.71 93.61 

Model 
S&P 500 Component Stock Dataset Stock News Sentiment Dataset 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Wang et al.[42] 89.58 89.65 89.90 89.77 87.47 87.53 88.27 87.90 

Li et al.[43] 87.35 91.25 88.67 89.94 87.95 90.27 90.95 90.61 

Bhandari et al.[44] 90.03 91.93 89.79 90.85 86.97 87.26 91.61 89.38 
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Verma et al.[45] 88.63 88.21 86.70 87.45 88.76 86.92 87.49 87.20 

Jiang et al.[46] 88.86 90.35 87.78 89.05 87.05 87.35 91.20 89.23 

Sharma et al.[47] 87.87 87.81 91.55 89.64 87.71 88.81 86.37 87.57 

Ours 92.87 93.64 94.07 93.85 92.17 92.96 94.35 93.65 

 
Table 1 illustrates the performance metrics of various models across different stock datasets, 
emphasizing the superior effectiveness of our proposed approach. In the Yahoo Finance Stock 
Dataset, our model achieved an accuracy of 92.65%, notably surpassing the next best result of 
89.80% from Bhandari et al. This trend of superior performance is consistent across all datasets 
evaluated. Our model excels not only in accuracy but also in precision and recall. For instance, it 
achieved a precision of 94.21% and a recall of 93.82% in the Yahoo dataset, leading to an 
impressive F1-score of 94.01%. These metrics indicate that our model effectively identifies 
relevant stock movements while minimizing false positives, thus demonstrating a strong ability to 
predict accurately and recognize true positives. When compared to other models, such as those 
proposed by Wang et al. and Li et al., our results show a clear advantage. While Bhandari et al. 
posted a commendable F1-score of 90.23%, it still falls short of our 93.61%. This pattern holds 
across the S&P 500 Component Stock Dataset and the Stock News Sentiment Dataset, where we 
achieved an accuracy of 92.87% and an F1-score of 93.85%, further establishing our model's 
superiority. Moreover, the consistent performance across different data sources highlights our 
model's versatility in handling various stock data types and adapting to shifting market conditions. 
This adaptability is essential for real-world applications where market dynamics can change 
unpredictably. Figure 4 provides a visual comparison of these results. 
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Figure 4. Visual comparison of relevant indicators on four datasets. 

The table below summarizes the computational efficiency of various models across four datasets 
by comparing parameters, inference time, and training time. This analysis highlights how each 
model balances complexity with speed, providing insights into their suitability for real-time stock 
prediction tasks where rapid processing is essential. 
 

Table2. Comparison of training indicators on four datasets. 

Model 

Yahoo Finance Stock Dataset Kaggle Stock Price Dataset 

Parameters

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Parameters

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Wang et 

al.[42] 
532.58 376.12 270.48 495.67 299.01 245.49 

Li et al.[43] 396.36 327.11 244.98 466.58 379.28 228.96 
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Model 

Yahoo Finance Stock Dataset Kaggle Stock Price Dataset 

Parameters

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Parameters

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Bhandari et 

al.[44] 
414.43 294.72 287.34 434.05 334.08 328.38 

Verma et 

al.[45] 
497.82 342.33 238.53 430.28 372.69 245.96 

Jiang et 

al.[46] 
394.92 289.55 286.73 488.57 388.56 273.47 

Sharma et 

al.[47] 
388.45 284.72 214.47 416.62 318.75 247.41 

Ours 346.14 261.76 184.46 351.07 273.51 195.49 

Model 

S&P 500 Component Stock Dataset Stock News Sentiment Dataset 

Parameters

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Parameters

(M) 

Inference 

Time(ms) 

Trainning 

Time(s) 

Wang et 

al.[42] 
431.64 411.44 230.13 398.79 342.78 236.69 

Li et al.[43] 564.81 384.06 268.07 486.57 297.29 232.37 

Bhandari et 

al.[44] 
436.16 447.87 271.14 494.23 314.96 239.68 

Verma et 

al.[45] 
459.95 422.62 283.47 411.68 335.37 254.08 

Jiang et 

al.[46] 
420.53 398.39 300.61 443.95 342.51 271.06 

Sharma et 

al.[47] 
560.44 373.98 265.89 463.96 348.15 257.60 

Ours 348.73 284.73 204.94 357.74 282.06 202.58 
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Table 2 presents a detailed comparison of various models based on their parameters, inference 
times, and training times across multiple stock datasets. Our model consistently demonstrates 
superior efficiency in both inference and training metrics when compared to existing approaches. 
In the Yahoo Finance Stock Dataset, our model has 346.14 M parameters, significantly fewer than 
models like Wang et al. (532.58 M) and Li et al. (396.36 M). This reduction in parameters is 
coupled with a lower inference time of 261.76 ms, compared to Wang et al.’s 376.12 ms and 
Bhandari et al.’s 294.72 ms. Additionally, our training time of 184.46 seconds is also the shortest 
among all models, indicating not only efficiency but also potential cost savings in computational 
resources. The trend continues across other datasets. In the Kaggle Stock Price Dataset, our model 
again requires only 351.07 M parameters and achieves an inference time of 273.51 ms, 
outperforming several competitors in both metrics. The training time remains competitive at 195.49 
seconds, underscoring our model's efficiency. Overall, the analysis of Table 2 indicates that our 
model not only achieves competitive performance metrics but also does so with a more efficient 
use of resources. Figure 5 provides a visual comparison of these results. 
 
 

 

Figure 5. Visual comparison of training indicators. 
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The table below displays the results of ablation studies to assess the impact of incorporating 
TimesNet and self-attention mechanisms on model performance. By comparing precision, recall, 
and F1-score across four datasets, this analysis demonstrates the contribution of each component 
to the overall effectiveness of our proposed model. 

Table3. Ablation experiments on four datasets. 

Model 
Yahoo Finance Stock Dataset Kaggle Stock Price Dataset 

Precision Recall F1-Score Precision Recall F1-Score 

baseline 83.64 82.46 83.05 85.27 84.73 85.00 

+timesnet 87.33 84.65 85.97 87.37 86.67 87.02 

+s-att 90.64 89.47 90.05 92.54 88.06 90.24 

+timesnet s-att 94.21 93.82 94.01 94.53 92.71 93.61 

Model 
S&P 500 Component Stock Dataset Stock News Sentiment Dataset 

Precision Recall F1-Score Precision Recall F1-Score 

baseline 82.36 83.71 83.03 81.43 83.27 82.34 

+timesnet 86.73 85.94 86.33 84.74 86.53 85.63 

+s-att 89.27 88.36 88.81 87.21 89.61 88.39 

+timesnet s-att 93.64 94.07 93.85 92.96 94.35 93.65 

 
Table 3 presents the results of ablation experiments across four datasets, illustrating the 
performance improvements brought by incorporating TimesNet and the self-attention mechanism 
into the baseline model. In the Yahoo Finance Stock Dataset, the baseline model starts with a 
precision of 83.64%, recall of 82.46%, and an F1-score of 83.05%. Adding TimesNet (+timesnet) 
provides a notable boost, raising the F1-score to 85.97%. Introducing the self-attention mechanism 
(+s-att) further enhances the F1-score to 90.05%. Combining both TimesNet and self-attention 
(+timesnet s-att) leads to a substantial improvement, achieving an F1-score of 94.01%, the highest 
among all configurations. A similar pattern is observed in the other three datasets: Kaggle Stock 
Price Dataset, S&P 500 Component Stock Dataset, and Stock News Sentiment Dataset. The 
baseline model’s performance consistently improves as TimesNet and self-attention are added, with 
the highest metrics achieved when both components are combined. For instance, in the Kaggle 
Stock Price Dataset, the F1-score improves from the baseline 85.00% to 93.61% with both 
TimesNet and self-attention. The same trend is observed in the S&P 500 Component Stock Dataset 
and the Stock News Sentiment Dataset, where the F1-scores peak at 93.85% and 93.65%, 
respectively, when both enhancements are applied. Overall, these results clearly demonstrate that 
the integration of TimesNet and self-attention substantially enhances model performance across all 
datasets, with the combined approach consistently yielding the highest precision, recall, and F1-
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scores. This confirms the effectiveness of TimesNet and self-attention in improving accuracy and 
robustness for stock prediction tasks. Figure 6 visually depict these trends. 

 

Figure 6. Visual comparison of ablation experiments on four datasets. 

5 Conclusion 

In this study, we proposed a deep reinforcement learning framework for stock trading strategy 
optimization, incorporating TimesNet and a self-attention mechanism to address the limitations of 
traditional methods in time series modeling. The experimental results across multiple datasets 
demonstrate that our approach significantly outperforms existing models in terms of precision, 
recall, and F1-score, highlighting its robustness and adaptability in complex market environments. 
The ablation experiments reveal the individual and combined contributions of TimesNet and self-
attention to model performance. TimesNet effectively captures multi-scale temporal features, 
enhancing the model’s ability to recognize long-term dependencies in stock market data. 
Meanwhile, the self-attention mechanism allows the model to focus on critical moments in the data, 
improving its handling of nonlinear and noisy sequences. When integrated, these components 
consistently deliver superior results across all tested datasets, underscoring their synergy in 
enhancing predictive accuracy. Our framework also proves to be computationally efficient, with 
reduced parameter counts, inference times, and training times compared to other approaches. This 
efficiency makes it a viable option for real-time applications in stock trading, where timely and 



18 

 

accurate predictions are crucial. In conclusion, this study demonstrates that combining TimesNet 
with self-attention in a deep reinforcement learning framework offers a promising path forward for 
intelligent, adaptive trading strategies. Future work could explore extending this framework to 
other financial instruments and incorporating more advanced reinforcement learning algorithms to 
further refine decision-making in dynamic and volatile markets. 
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